Chapter 14
Mendel and the Gene Idea
Gregor Mendel

- Born and raised on a farm in the Czech Republic (Austria)
- 1840’s entered a monastic lifestyle and studied science
 - During this time many scientists were monks
- In 1857, Mendel began to perform experiments with garden peas to gain an understanding of inheritance
Why peas???

• Breeding could be strictly controlled
 – No random breeding
 – And no self-pollination, the male portions of the flowers were removed prior to maturity
 – Mendel performed cross-pollination
• Peas were removed from pods and Mendel could track the offspring from individual parents
• Lots of varieties of peas
Mendel kept records of:

– Heritable features; **characters**
 • Flower color is a character

– Variants for a character; **traits**
 • Purple flowers *or* white flowers are traits

• Mendel also made sure his projects began with pea varieties that were **true-breeding**
 – self-pollination only produces offspring that are the same variety
• In a typical breeding experiment, Mendel would cross-pollinate two contrasting, true-breeding pea varieties.

– Hybridization
 • Crossing of two true-breeding parents
 – P generation
 • Hybrid offspring represent the first filial generation
 – F₁ generation

– Mendel carried out most of his experiments at least to the F₂ generation
 • Produced by allowing the F₁ generation to self pollinate
• It was this second filial generation where Mendel noticed the fundamental principles of heredity
From these simple experiments Mendel derived:

- Law of segregation
- Law of independent assortment

- Now keep in mind, all of this occurred well before the technology to understand how meiosis worked had been developed!!!

- Some say Mendel got lucky!!!
- Some say Mendel cheated and fudged the data??
- Who knows??!!!
Mendel's model

• Let’s look at one of Mendel’s experiments
• What happened to the white flowers in F_1?
• If it were totally lost, then how could white flowers be present in the F_2?
• Mendel collected data on the number of offspring
 – F_2
 • 705 purple
 • 224 white
 • ~3:1
• Mendel described traits as
 – dominant
 – recessive
Mendel developed a hypothesis to explain the 3:1 inheritance ratios

- **Four concepts to Mendel’s model**

 1. Alternative versions of genes account for variations in inherited characters
 - These are called alleles; correspond to loci on chromosomes

 2. For each character, an organism inherits two alleles, one from each parent

 3. If the two alleles at a locus differ, the dominant allele determines the physical appearance; the recessive allele has no noticeable effect on appearance

 4. These alleles for an inherited character separate during gamete formation – **Law of Segregation**
Keep in mind..

• Mendel had no idea about
 – homologous chromosomes
 – where alleles were actually located at loci
Punnett Squares are useful to illustrate likely combinations of alleles.

Also, give insight to ratios and probabilities of offspring with a given

- Genotype – the genetic makeup
- Phenotype – physical appearance
• Phenotype
 – Ratio 3:1

• Genotype
 – **Homozygous**
 • Identical pair of alleles for a gene
 • Homozygous dominant or homozygous recessive
 – **Heterozygous**
 • Two unlike alleles for a gene
 – Ratio
 • 1:2:1
This same principle can also be used to determine if an organism which exhibits a dominant trait (phenotype) is homozygous or heterozygous (genotype) for a given trait.

- **Testcross** is used to make this determination

- **example**
 - We have a pea plant that has purple flowers
 - phenotype = purple
 - Genotype = PP *or* Pp
 - A testcross will be performed using a white flowered mate (white phenotype; must be homozygous recessive genotype, pp)
Dominant phenotype, unknown genotype: PP or Pp?

Recessive phenotype, known genotype: pp

If PP, then all offspring purple:

If Pp, then $\frac{1}{2}$ offspring purple and $\frac{1}{2}$ offspring white:
• In these experiments where Mendel tracked a single character all of the F_1 offspring produced were hybrids of true-breeding parents for a single character
 – Monohybrids

• In his experiments Mendel tracked seven different characters
<table>
<thead>
<tr>
<th>Character</th>
<th>Dominant Trait</th>
<th>×</th>
<th>Recessive Trait</th>
<th>F₂ Generation</th>
<th>Dominant:Recessive</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower color</td>
<td>Purple</td>
<td>×</td>
<td>White</td>
<td>705:224</td>
<td></td>
<td>3.15:1</td>
</tr>
<tr>
<td>Flower position</td>
<td>Axial</td>
<td>×</td>
<td>Terminal</td>
<td>651:207</td>
<td></td>
<td>3.14:1</td>
</tr>
<tr>
<td>Seed color</td>
<td>Yellow</td>
<td>×</td>
<td>Green</td>
<td>6022:2001</td>
<td></td>
<td>3.01:1</td>
</tr>
<tr>
<td>Seed shape</td>
<td>Round</td>
<td>×</td>
<td>Wrinkled</td>
<td>5474:1850</td>
<td></td>
<td>2.96:1</td>
</tr>
<tr>
<td>Pod shape</td>
<td>Inflated</td>
<td>×</td>
<td>Constricted</td>
<td>882:299</td>
<td></td>
<td>2.95:1</td>
</tr>
<tr>
<td>Pod color</td>
<td>Green</td>
<td>×</td>
<td>Yellow</td>
<td>428:152</td>
<td></td>
<td>2.82:1</td>
</tr>
<tr>
<td>Stem length</td>
<td>Tall</td>
<td>×</td>
<td>Dwarf</td>
<td>787:277</td>
<td></td>
<td>2.84:1</td>
</tr>
</tbody>
</table>
Law of Independent Assortment

• To derive his second law, Mendel had to track two characters at one time
• Used two true-breeding pea varieties
 • yellow round seeds (YYRR) x green wrinkled seeds (yyrr)
 • The F₁ offspring are known as dihybrids
 – YyRr genotype; yellow round seeds phenotypes
• When the dihybrid cross is performed, the phenotypical ratio of 3:1 is not seen
• This means that the alleles are segregated or separated at some point
• This illustrates the **law of independent assortment**
 – Each pair of alleles segregates independently of other pairs of alleles during gamete formation
P Generation

YYRR

Gametes

YR

×

yr

F₁ Generation

Hypothesis of dependent assortment

Hypothesis of independent assortment

YyRr

F₂ Generation (predicted offspring)

Eggs

1/2 YR

1/2 yr

1/4 YyRr

1/4 yyyrr

1/4 YyRr

1/4 yyrr

Phenotypic ratio 3:1

Sperm

1/4 YR

1/4 Yr

1/4 yR

1/4 yr

Eggs

YYRR

YYRr

YyRR

YyRr

YYrr

YyRr

Yyrr

Phenotypic ratio 9:3:3:1

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.
Mendel was lucky!!

• He chose – characters with alleles located on different chromosomes – not homologous chromosomes
 – Genes located near each other on the same chromosome tend to be inherited together and have more complex patterns of inheritance

• He chose – characters which exhibited complete dominance of one allele over another

• He chose characters controlled by only two alleles; no multiple alleles
Spectrum of dominance

• Complete dominance
 – The dominant allele determines phenotype over recessive allele
 – Ex: purple vs. white pea flowers
Spectrum of dominance

• Codominance
 – Both alleles affect the phenotype in separate distinguishable ways
 – EX: MN blood groups

 • Not blood type!!!!!!!
 – Codominant alleles for the synthesis of two specific glycoproteins
 – Individuals that are MM have RBC with M glycoproteins
 – Individuals that are NN have RBC with N glycoproteins
 – Individuals that are MN have RBC with both M and N glycoproteins
Spectrum of dominance

- Incomplete dominance
 - Alleles for some characters fall in the middle of the spectrum of dominance; phenotype represents a ‘blending’ of the two parental varieties
 - EX: snapdragon flower color
 - F^2 ratio 1:2:1
Multiple alleles

- More than two alleles control the phenotype

- **EX: Human blood type**
 - There are four possible phenotypes
 - A, B, AB, O
 - There are three alleles for the enzyme (I) that attaches the A or B carbohydrate to the RBC
 - I^A, I^B or i (neither)
 - Matching blood type is essential!
 - If a person with type A blood receives blood from type B or AB their immune system attacks the cells with the B and can cause clumps/clots
 - AB – universal recipient
 - O – universal donor

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype (Blood Group)</th>
<th>Red Blood Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I^A I^A$ or $I^A i$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>$I^B I^B$ or $I^B i$</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>$I^A I^B$</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>$i i$</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
So far we have treated inheritance as though each gene effects one character…

• This is not the norm.
• Most genes have multiple phenotypic effects
 – Pleiotropy

 – Pleiotropic alleles are responsible for multiple symptoms associated with some hereditary diseases
 • Cystic fibrosis
 • Sickle-cell disease (sickle-celled anemia)
Cystic fibrosis

- The most common lethal genetic disorder in the USA
- Most common in European lineages
- It is a recessively inherited disorder
 - Must be homozygous recessive)
- It is estimated that 1 in 25 Americans of European descent are **carriers** (heterozygotes) and have normal phenotypes
 - Normal allele codes for membrane protein that functions in chloride transport across mucous membranes
 - Homozygous recessive phenotypes exhibit multiple (pleiotropic) effects
 - Poor absorption of nutrients
 - Chronic bronchitis
 - Untreated is usually lethal before age 5 or 6
 - Aggressive treatment with antibiotics can allow for survival into early adult hood
Sickle-cell disease

• Most common in African lineages
 – Estimated that it affects 1 in 400 African Americans
• Recessively inherited disorder
• Homozygotes have malformed RBC due to slight change in hemoglobin protein
 – Poor oxygen transport
 – Irregular clotting/clumping of sickle shaped cells
 – Pleiotropic effects
 – Also exhibits incomplete dominance; heterozygotes (about 1 in 10 African Americans) may suffer some reduced symptoms
 – Why so common???
 • Possible link to malaria
 – Malarial parasite not able to infect sickle-shaped cells
Epistasis

• A gene at one locus alters the phenotypic expression of a gene at another locus
 – “Stop gene”
 – Example
 • Hair color in many mammals
 – Black (B) is dominant to brown (b)
 » So to have brown fur \(\rightarrow \) bb
 – A second gene determines if pigment will be deposited in the hair; dominant (C) is to have pigment deposition
 – If the mammal is homozygous recessive at the locus for the second gene (cc) then the coat is white regardless of what the first gene’s alleles say
• Note genotypes still 9:3:3:1

• But phenotypes are now 9:3:4!!!
Sperm

- $1/4 \boxtimes BE$
- $1/4 \boxtimes bE$
- $1/4 \boxtimes Be$
- $1/4 \boxtimes be$

Eggs

<table>
<thead>
<tr>
<th>Sperm Combination</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BBEE$</td>
<td>Golden</td>
</tr>
<tr>
<td>$BbEE$</td>
<td>Black</td>
</tr>
<tr>
<td>$BBee$</td>
<td>Black</td>
</tr>
<tr>
<td>$bbEE$</td>
<td>Black</td>
</tr>
<tr>
<td>$BbEe$</td>
<td>Chocolate</td>
</tr>
<tr>
<td>$bbee$</td>
<td>Yellow</td>
</tr>
<tr>
<td>$Bbee$</td>
<td>Black</td>
</tr>
<tr>
<td>$bbee$</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

Ratio: 9 Black : 3 Chocolate : 4 Yellow
Polygenic inheritance

• Effect of two or more genes on a single phenotype
 – Opposite of pleiotropy

• Example
 – Skin pigmentation in humans
 • At least three separate genes
 • From gradations in phenotypic expression
Not all human genetic disorders are recessive

- **Achondroplasia** – form of dwarfism
 - 99.99% of population is homozygous recessive
 - About 1: 250,000 exhibit phenotype
 - (AA or Aa)

- **Huntington’s disease**
 - Degenerative disease of nervous system
 - Usually fatal by age 40
 - Approx 1 in 10,000 in USA
These and other genetic disorders have lead to many advances in genetic testing and counseling.

- **Amniocentesis** - testing of amniotic fluid
 - Can test fetal cells or presence of chemicals in fluid
• Chorionic villus sampling (CVS)
 – Tests a sample of tissue from placenta
 • Faster than amniocentesis
It is important to ponder…

• Are we who we are because of our genes?
 – nature

• Are we who we are because of our environment?
 – nurture
It is important to ponder...

• Nature vs. Nurture
• Even identical twins differ slightly (or markedly)
• Generally many factors (both genetic and environmental) affect phenotype – **multifactorial**